目前移動機器人的避障根據(jù)環(huán)境信息的掌握程度可以分為障礙物信息已知、障礙物信息部分未知或*未知兩種。傳統(tǒng)的導航避障方法如可視圖法、柵格法、自由空間法等算法對障礙物信息己知時的避障問題處理尚可,但當障礙信息未知或者障礙是可移動的時候,傳統(tǒng)的導航方法一般不能很好的解決避障問題或者根本不能避障。而實際生活中,絕大多數(shù)的情況下,機器人所處的環(huán)境都是動態(tài)的、可變的、未知的,為了解決上述問題,人們引入了計算機和人工智能等領(lǐng)域的一些算法。同時得益于處理器計算能力的提高及傳感器技術(shù)的發(fā)展,在移動機器人的平臺上進行一些復(fù)雜算法的運算也變得輕松,由此產(chǎn)生了一系列智能避障方法,比較熱門的有:遺傳算法、神經(jīng)網(wǎng)絡(luò)算法、模糊算法等,下面分別加來介紹。
1、基于遺傳算法的機器人避障算法:
遺傳算法(genetic algorithm ,簡稱GA )是計算數(shù)學中用于解決較佳化的搜索算法,是進化算法的一種。進化算法是借鑒了進化生物學中的遺傳、突變、自然選擇以及雜交等現(xiàn)象而發(fā)展起來的。遺傳算法采用從自然進化中抽象出來的幾個算子對參數(shù)編碼的字符串進行遺傳操作,包括復(fù)制或選擇算子(Reproduction or Select)、交叉算子(Crossover)、變異算子(Mutation)。
遺傳算法的主要優(yōu)點是:采用群體方式對目標函數(shù)空間進行多線索的并行搜索,不會陷入局部極小點;只需要可行解目標函數(shù)的值,而不需要其他信息,對目標函數(shù)的連續(xù)性、可*沒有要求,使用方便;解的選擇和產(chǎn)生用概率方式,因此具有較強的適應(yīng)能力和魯棒性。
2、基于神經(jīng)網(wǎng)絡(luò)算法的機器人避障方法:
神經(jīng)網(wǎng)絡(luò)(neural network,縮寫NN),是一種模仿生物神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能的數(shù)學模型或計算模型。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進行計算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)能在外界信息的基礎(chǔ)上改變內(nèi)部結(jié)構(gòu),是一種自適應(yīng)系統(tǒng)。人工神經(jīng)網(wǎng)絡(luò)通常通過一個基于數(shù)學統(tǒng)計學類型的學習方法優(yōu)化,是一種非線性統(tǒng)計性數(shù)據(jù)建模工具,可以對輸入和輸出間復(fù)雜的關(guān)系進行建模。
傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)路徑規(guī)劃方法往往是建立一個關(guān)于機器人從初始位置到目標位置行走路徑的神經(jīng)網(wǎng)絡(luò)模型,模型輸入是傳感器信息和機器人前一位置或者前一位置的運動方向,通過對模型訓練輸出機器人下一位置或者下一位置的運動方向??梢越⒒趧討B(tài)神經(jīng)網(wǎng)絡(luò)的機器人避障算法,動態(tài)神經(jīng)網(wǎng)絡(luò)可以根據(jù)機器人環(huán)境狀態(tài)的復(fù)雜程度自動地調(diào)整其結(jié)構(gòu),實時地實現(xiàn)機器人的狀態(tài)與其避障動作之間的映射關(guān)系,能有效地減輕機器人的運算壓力。還有研究通過使用神經(jīng)網(wǎng)絡(luò)避障的同時與混合智能系統(tǒng)(HIS)相連接,可以使移動機器人的認知決策避障能力和人相近。
3、基于模糊控制的機器人避障算法
模糊控制(fuzzy control)是一類應(yīng)用模糊集合理論的控制方法,它沒有像經(jīng)典控制理論那樣把實際情況加以簡化從而建立起數(shù)學模型,而是通過人的經(jīng)驗和決策進行相應(yīng)的模糊邏輯推理,并且用具有模糊性的語言來描述整個時變的控制過程。對于移動機器人避障用經(jīng)典控制理論建立起的數(shù)學模型將會非常粗糙,而模糊控制則把經(jīng)典控制中被簡化的部分也綜合起來加以考慮。
對于移動機器人避障的模糊控制而言,其關(guān)鍵問題就是要建立合適的模糊控制器,模糊控制器主要完成障礙物距離值的模糊化、避障模糊關(guān)系的運算、模糊決策以及避障決策結(jié)果的非模糊化處理(精確化)等重要過程,以此來智能地控制移動機器人的避障行為。利用模糊控制理論還可將專家知識或操作人員經(jīng)驗形成的語言規(guī)則直接轉(zhuǎn)化為自動控制策略。通常使用模糊規(guī)則查詢表,用語言知識模型來設(shè)計和修正控制算法。
除此之外還有啟發(fā)式搜索算法、基于行為的路徑規(guī)劃算法、基于再激勵學習的路徑規(guī)劃算法等避障算法,也都在移動機器人的避障研究中取得了很好的成果。